Difference between revisions of "Tutorial"
Line 33: | Line 33: | ||
ssid="UCSDRoboCar2.4GHz" | ssid="UCSDRoboCar2.4GHz" | ||
key_mgmt=WPA-PSK | key_mgmt=WPA-PSK | ||
psk=" | psk="ask your instructor" | ||
priority=60 | priority=60 | ||
id_str="ucsdrobocarsfield" | id_str="ucsdrobocarsfield" | ||
Line 41: | Line 41: | ||
ssid="UCSDRoboCar2.4GHz_lab" | ssid="UCSDRoboCar2.4GHz_lab" | ||
key_mgmt=WPA-PSK | key_mgmt=WPA-PSK | ||
psk=" | psk="ask your instructor" | ||
priority=50 | priority=50 | ||
id_str="ucsdrobocarlab" | id_str="ucsdrobocarlab" |
Revision as of 23:08, 13 October 2017
Build
Designing and fabricating a wheel based mobile robot vs. building on the top of a reliable platform such as an R/C truck 1/8 scale.
- R/C Truck 1/8 Scale
- Embedded system 4 cores Linux
- 5 megapixel camera
- Servo controller
- Power management
- LiPo Battery
- Safety on LiPo charging, use, and storage
- Wireless Emergency Off (EMO) circuit
Raspberry Pi Setup
Follow the instructions from:
http://docs.donkeycar.com/guide/install_software
to download an image that already contains all that you need to run the donkey car software.
Follow the instructions in Get the Raspberry Pi working.
This next step is very important. If you miss this configuration before you boot for the first time you will not be able to connect to your Pi using the lab network!
Substitute the content of the file /boot/wpa_supplicant.conf
given in the section Setup the Pi's WiFi for first boot by the following:
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev update_config=1 country=US network={ ssid="UCSDRoboCar2.4GHz" key_mgmt=WPA-PSK psk="ask your instructor" priority=60 id_str="ucsdrobocarsfield" } network={ ssid="UCSDRoboCar2.4GHz_lab" key_mgmt=WPA-PSK psk="ask your instructor" priority=50 id_str="ucsdrobocarlab" }
and follow the instructions for booting your Pi for the first time, including the section Setup Pi's Hostname. After the first boot, this file will be moved to /etc/wpa_supplicant/wpa_supplicant.conf
where it may be edited later.
STOP do not run anything starting at Connecting to the Pi.
Donkeycar
Installation =
First remove the donkey and d2 directories
(env)pi@jackrpi02:~ $ rm -rf donkeycar (env)pi@jackrpi02:~ $ rm -rf d2
Download the latest Donkey code
(env)pi@jackrpi02:~ $ git clone https://github.com/wroscoe/donkey donkeycar
Install Donkeycar:
(env)pi@jackrpi02:~ $ pip install -e donkeycar
Create a car folder.
(env)pi@jackrpi02:~ $ donkey createcar --path ~/d2
The latest command will produce an output similar to:
Using TensorFlow backend. Creating car folder: /home/pi/d2 making dir /home/pi/d2 Creating data & model folders. making dir /home/pi/d2/models making dir /home/pi/d2/data making dir /home/pi/d2/logs Copying car application template: donkey2 Copying car config defaults. Adjust these before starting your car. Donkey setup complete.
Testing the connection of the RPI to the Pulse Width Modulation (PWM) Controller
Type:
(env)pi@jackrpi02:~ $ sudo i2cdetect -y 1
which should produce an output like:
(env)pi@jackrpi02:~ $ sudo i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f 00: -- -- -- -- -- -- -- -- -- -- -- -- -- 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 70: 70 -- -- -- -- -- -- --
The important point here is to get a response from the I2C addresses 40 and 70. If you do not see these numbers you are not connected to the ESC or the Servo controller.
Throttle and Steering Calibration
Before you develop code or you can use a someone's code to control a robot, we need to calibrate the actuator/mechanism to find out its range of motion compared to the control / command a computer will send to the controller of the actuator/mechanism.
The calibration is car specific. If you use the same platform, the numbers should be really close. Otherwise, you will need to calibrate your car.
I am following the standard from RC CAR world, Channel 1 for Steering, Channel 2 for Throttle
Donkey use Channels 0 and 1
Connect the Steering Servo on Channel 1 Connect the Throttle on Channel 2
The calibration is RoboCar specific. If you use the same platform, the numbers should be really close. Otherwise, you will need to calibrate your car.
The example below is for the Hobbyking GTR Drift Car
I am following the standard from RC/CAR world, Channel 1 for Steering, Channel 2 for Throttle
MAKE SURE THE ROBOT IS IN THE STAND
Connect the batteries and batteries monitor Power the RPI Power the Electronic Speed Controller (ESC) Enable the robot (EMO) - LED should be RED
Lets run a Python command to calibrate Steering and Throttle The donkey commands need to be run from the directory you created for your car, i.e., d2
Change directory to d2 (env)pi@jackrpi02:~ $ cd d2 (env)pi@jackrpi02:~/d2 $ python manage.py calibrate
Using TensorFlow backend.
Channel 1 has the Steering Servo (STEERING). Try some values around 400 to center the steering
Enter the channel your actuator uses (0-15).1
Enter a PWM setting to test(100-600)370
Enter a PWM setting to test(100-600)365
Enter a PWM setting to test(100-600)360
In my case, 365 seems to center the steering Take note of the left max, right max, ex:
365 - Center 285 - Steering left max 440 - Steering right max
Note: When the manage.py calibrate times-out, just run it again (env)pi@jackrpi02:~/d2 $ python manage.py calibrate You can interrupt the calibration by typing CTRL-C
Now to calibrate the Throttle Electronic Speed Controller ESC (THROTTLE)
Following the standard for R/C cars. Throttle goes on channel 2
Using TensorFlow backend.
Enter the channel your actuator uses (0-15).2
Enter a PWM setting to test(100-600)370 (neutral)
Enter a PWM setting to test(100-600)380
Enter a PWM setting to test(100-600)390
370 when power up the ESC seems to be the middle point (neutral), lets use 370 also to be compatible with Donkey.
Neutral when power the ESC - 370 Then go in increments of 10~20 until you can no longer hear increase on the speed of the car. Don’t worry much about the max speed since we won’t drive that fast autonomously and during training the speed will be limited.
Max speed forward - 460
Reverse on RC cars is a little tricky because the ESC needs to receive a reverse pulse, zero pulse, and again reverse pulse to start to go backwards.
Use the same technique as above set the PWM setting to your zero throttle (lets say 370).
Enter the reverse value, then the zero throttle (e.g., 370) value, then the reverse value again.
Enter values +/- 10 of the reverse value to find a reasonable reverse speed. Remember this reverse PWM value.
(env)pi@jackrpi02:~/d2 $ python manage.py calibrate
Using TensorFlow backend.
loading config file: /home/pi/d2/config.py
config loaded
Enter the channel your actuator uses (0-15).2
Enter a PWM setting to test(100-600)360
Enter a PWM setting to test(100-600)370
Enter a PWM setting to test(100-600)360
Enter a PWM setting to test(100-600)350
Enter a PWM setting to test(100-600)340
Enter a PWM setting to test(100-600)330
Enter a PWM setting to test(100-600)320
Enter a PWM setting to test(100-600)310
Enter a PWM setting to test(100-600)300
Enter a PWM setting to test(100-600)290
(env)pi@jackrpi02:~/d2 $
---
Neutral when power the ESC - 370
Max speed forward - 460
Max speed backwards - 280
and from the steering calibration
Center - 365 Steering left max - 285 Steering right max - 440 ---
Now lets write these values into the car configuration file (env)pi@jackrpi02:~/d2 $ ls config.py data logs manage.py models
Edit the file config.py
(env)pi@jackrpi02:~/d2 $ nano config.py
Change these values according to calibration values and where you have the steering servo and ESC connected
...
- STEERING
STEERING_CHANNEL = 1 STEERING_LEFT_PWM = 285 STEERING_RIGHT_PWM = 440
- THROTTLE
THROTTLE_CHANNEL = 2 THROTTLE_FORWARD_PWM = 460 THROTTLE_STOPPED_PWM = 370 THROTTLE_REVERSE_PWM = 280
Also change these
- JOYSTICK
USE_JOYSTICK_AS_DEFAULT = True JOYSTICK_MAX_THROTTLE = 0.5 JOYSTICK_STEERING_SCALE = 1.0 AUTO_RECORD_ON_THROTTLE = True
Track
- Track building - hands-on ~ 40x20 m
Python
Open CV
ROS
Autonomous Vehicles
- Odometry with wheels encoders and IMU
- Short range obstacle avoidance using low cost ultrasonic sensors
- Street light development RED/YELLOW/GREEN
- Image processing with OpenCV
- Image segmentation - far view, close view, fast processing