Project fetch

From MAE/ECE 148 - Introduction to Autonomous Vehicles
Jump to navigation Jump to search

The objective of this project is to utilize the camera and OpenCV to instruct the robocar to identify a tennis ball, collect the ball, and return it to home.

Code Implementation:

The process described above can be pretty easily implemented using a while loop and divvying up code into different function. But, this kind of implementation puts restrictions on the code in that it is difficult to modify/build on without significant understanding and restructuring of the code. A better way is to modularize the code by using the DonkeyCar Framework, which is already used when running the car with

To learn how to modify the DonkeyCar framework, start with the following tutorial videos done by the creator of DonkeyCar. Understanding of these two is all you need to know, and the following discussion should be used as a complement to the tutorials:

The attached file "" is the overarching program that was used to run our code. This is the function to be called when running the car. All other programs are called from within this one. This program sets up the DonkeyCar Vehicle, which holds each "part." A "part" consists of a series of functions defined in a class that is run at a specific time, as determined by the Framework. To add a part to the vehicle, an instance of the class needs to be created (e.g cam=CvCam1.CvCam()). This creates a variable that is linked to another program that holds the code for what the part is going to do. For example, the cam variable holds a class that will take an image with the camera and return the image. These parts need to be added to the Vehicle using the .add command.

Parts: In the case where threaded=True, the part is not restricted to the frequency at which the DonkeyCar runs each part (which can be changed in the program, default=20Hz). In our case, all parts use threaded=False, in which case the Vehicle essentially runs like a while loop that will run the parts in the order that they are added. Each part can have specified inputs or outputs. These inputs and outputs are held by the Vehicle to be accessed by any other part. For example, the camera part outputs an image: outputs=["camera/image"]. This output can be accessed by the image filtering part by adding: inputs=["camera/image"]. The ability to add additional or threaded parts to the Vehicle is what gives this framework an advantage over a simple while loop.

Team 1's Parts: 5 parts were used in

cam - takes and outputs and Image with the RPI Camera

filterImage - Takes the Image and applies image manipulations. Outputs x,y, and radius pixel information

Controller - Takes x,y, and radius. Calculates distance and bearing to the ball and outputs the PWM to send to the car. This part is also responsible for determining when to perform donuts, checking the PWM bounds, applying the PWM control, and determining if the ball has been found.

SteeringPWMSender, ThrottlePWMSender - Takes PWM values and sends them to the car. These parts use the pre-existing PCA9685 class that is already used in This class can be found in donkeycar/donkeycar/parts/ PCA9685 is a class that is setup to communication with our specific hardware. When setting up the PCA9685 instance, the class takes an input of the channel number (e.g Channel 1 or Channel 2), as determined by your electronic hookup to your motor controller. Setting up this instance provides a method to send PWM values to the car, but does not provide flexibility to do other things with this instance (unless the PCA9685 class is edited directly). As a result, another class called SteeringPWMSender/ThrottlePWMSender is made, which uses the PCA9685 instance, but also contains other actions. This second class is what is added as a part to the Vehicle. This program holds the CvCam and ImageConvandFilter class. As noted earlier, the Vehicle will call the parts in the order that they are added. Each part should have at least three functions: When parts are called, they are first fed the inputs and variables are set within the "def __init__():" function. These are the variables that are available to the class as it runs its code. Next, the "def run:" function is run. This run function should hold everything that you want the part to do. It may call other functions within the class, but when it returns its outputs (or None if it has no outputs), the part will be finished and the Vehicle will move to the next part. Lastly, "def shutdown():" will be called when the user hits Ctl+C to stop the code. This is a good place to shut down motors/deactivate the camera so that the car does not keep running after the code has stopped. While these three functions should be in each part, you may place other functions in the part, which can be called by "def run():" during its operation. This program holds the Controller, SteeringPWMSender, ThrottlePWMSender classes. This is a configuration file that holds all the constants for the code. It use makes for cleaner code and easy adjustable values.