2021SummerTeam6
Team 6 Members
From Left to Right
Kevin Bishara (MAE) | William Lynch (ECE) | Anwar Hsu (ECE)
Robot & 3D Modeling Designs
Our Robot
Electronics Plate
Camera Mount
Jetson Nano Case
Autonomous Laps
DonkeyCar Laps
Our autonomous laps for DonkeyCar can be found here.
OpenCV/ROS Laps
Our OpenCV/ROS autonomous laps can be found here.
Final Project Overview
Our Python Code!
# -*- coding: utf-8 -*- """ Created on Mon Mar 29 14:31:14 2021 @author: Anwar """ ## You need to install pyaudio to run this example # pip install pyaudio # When using a microphone, the AudioSource `input` parameter would be # initialised as a queue. The pyaudio stream would be continuosly adding # recordings to the queue, and the websocket client would be sending the # recordings to the speech to text service import pyaudio from ibm_watson import SpeechToTextV1 from ibm_watson.websocket import RecognizeCallback, AudioSource from threading import Thread from ibm_cloud_sdk_core.authenticators import IAMAuthenticator try: from Queue import Queue, Full except ImportError: from queue import Queue, Full ############################################### #### Initalize queue to store the recordings ## ############################################### CHUNK = 1024 # Note: It will discard if the websocket client can't consumme fast enough # So, increase the max size as per your choice BUF_MAX_SIZE = CHUNK * 10 # Buffer to store audio q = Queue(maxsize=int(round(BUF_MAX_SIZE / CHUNK))) # Create an instance of AudioSource audio_source = AudioSource(q, True, True) ############################################### #### Prepare Speech to Text Service ######## ############################################### # initialize speech to text service authenticator = IAMAuthenticator('your API key') speech_to_text = SpeechToTextV1(authenticator=authenticator) # define callback for the speech to text service class MyRecognizeCallback(RecognizeCallback): def __init__(self): RecognizeCallback.__init__(self) def on_transcription(self, transcript): print(transcript) def on_connected(self): print('Connection was successful') def on_error(self, error): print('Error received: {}'.format(error)) def on_inactivity_timeout(self, error): print('Inactivity timeout: {}'.format(error)) def on_listening(self): print('Service is listening') def on_hypothesis(self, hypothesis): print(hypothesis) def on_data(self, data): print(data) def on_close(self): print("Connection closed") # this function will initiate the recognize service and pass in the AudioSource def recognize_using_weboscket(*args): mycallback = MyRecognizeCallback() speech_to_text.recognize_using_websocket(audio=audio_source, content_type='audio/l16; rate=44100', recognize_callback=mycallback, interim_results=True) ############################################### #### Prepare the for recording using Pyaudio ## ############################################### # Variables for recording the speech FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 44100 # define callback for pyaudio to store the recording in queue def pyaudio_callback(in_data, frame_count, time_info, status): try: q.put(in_data) except Full: pass # discard return (None, pyaudio.paContinue) # instantiate pyaudio audio = pyaudio.PyAudio() # open stream using callback stream = audio.open( format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK, stream_callback=pyaudio_callback, start=False ) ######################################################################### #### Start the recording and start service to recognize the stream ###### ######################################################################### print("Enter CTRL+C to end recording...") stream.start_stream() try: recognize_thread = Thread(target=recognize_using_weboscket, args=()) recognize_thread.start() while True: pass except KeyboardInterrupt: # stop recording stream.stop_stream() stream.close() audio.terminate() audio_source.completed_recording() import rospy import cv2 import numpy as np from std_msgs.msg import Int32, Int32MultiArray from sensor_msgs.msg import Image from decoder import decodeImage import time from cv_bridge import CvBridge from elements.yolo import OBJ_DETECTION # Give names for nodes and topics for ROS STOPSIGN_NODE_NAME = 'stopsign_node' STOPSIGN_TOPIC_NAME = 'StopSign' CAMERA_TOPIC_NAME = 'camera_rgb' # types of objects that can be detected Object_classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] Object_colors = list(np.random.rand(80,3)*255) Object_detector = OBJ_DETECTION('weights/yolov5s.pt', Object_classes) class StopSignDetection: def __init__(self): self.init_node = rospy.init_node(STOPSIGN_NODE_NAME, anonymous=False) # initialize the node self.StopSign_publisher = rospy.Publisher(STOPSIGN_TOPIC_NAME,Int32, queue_size=1) # make this node a publisher self.camera_subscriber = rospy.Subscriber(CAMERA_TOPIC_NAME,Image,self.detect_stop) # subscribe to the camera feed self.bridge =CvBridge() self.stopsign = Int32() def detect_stop(self,data): frame = self.bridge.imgmsg_to_cv2(data) # get frame from camera feed data # detection process objs = Object_detector.detect(frame) # detect the object # plotting for obj in objs: # print(obj) label = obj['label'] score = obj['score'] [(xmin,ymin),(xmax,ymax)] = obj['bbox'] color = Object_colors[Object_classes.index(label)] frame = cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), color, 2) frame = cv2.putText(frame, f'{label} ({str(score)})', (xmin,ymin), cv2.FONT_HERSHEY_SIMPLEX , 0.75, color, 1, cv2.LINE_AA) cv2.imshow('stopsign',frame) # create window to show objects detected cv2.waitKey(1) # if a stop sign is detected send out a 1 else send out 0 if label == 'stop sign' and score > 0.1: self.stopsign.data = 1 self.StopSign_publisher.publish(self.stopsign) else: self.stopsign.data = 0 self.StopSign_publisher.publish(self.stopsign) def main(): StopSign_detector = StopSignDetection() rate = rospy.Rate(15) while not rospy.is_shutdown(): rospy.spin() rate.sleep() if __name__=='__main__': main()