From MAE/ECE 148 - Introduction to Autonomous Vehicles
Revision as of 16:50, 5 September 2021 by 2021SummerTeam6 (talk | contribs) (Our Python Code!)
Jump to: navigation, search

Team 6 Members


From Left to Right

Kevin Bishara (MAE) | William Lynch (ECE) | Anwar Hsu (ECE)

Robot & 3D Modeling Designs

Our Robot


Electronics Plate


Camera Mount

Jetson Nano Case

Cad2.png Cad3.png

Autonomous Laps

    DonkeyCar Laps

Our autonomous laps for DonkeyCar can be found here.

    OpenCV/ROS Laps

Our OpenCV/ROS autonomous laps can be found here.

Final Project Overview

Our Python Code!

# -*- coding: utf-8 -*-
Created on Mon Mar 29 14:31:14 2021

@author: Anwar
## You need to install pyaudio to run this example
# pip install pyaudio

# When using a microphone, the AudioSource `input` parameter would be
# initialised as a queue. The pyaudio stream would be continuosly adding
# recordings to the queue, and the websocket client would be sending the
# recordings to the speech to text service
import rospy
import cv2
import numpy as np
from std_msgs.msg import Int32, Int32MultiArray
from sensor_msgs.msg import Image
from decoder import decodeImage
import time
from cv_bridge import CvBridge
from elements.yolo import OBJ_DETECTION

# Give names for nodes and topics for ROS
STOPSIGN_NODE_NAME = 'stopsign_node'
CAMERA_TOPIC_NAME = 'camera_rgb'

# types of objects that can be detected

Object_classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',                'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',                'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',                'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',                'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',                'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',                'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',                'hair drier', 'toothbrush' ] 

Object_colors = list(np.random.rand(80,3)*255)
Object_detector = OBJ_DETECTION('weights/yolov5s.pt', Object_classes)

class StopSignDetection:
        def __init__(self):
            self.init_node = rospy.init_node(STOPSIGN_NODE_NAME, anonymous=False)                 # initialize the node
            self.StopSign_publisher = rospy.Publisher(STOPSIGN_TOPIC_NAME,Int32, queue_size=1)    # make this node a publisher
            self.camera_subscriber = rospy.Subscriber(CAMERA_TOPIC_NAME,Image,self.detect_stop)   # subscribe to the camera feed
            self.bridge =CvBridge()
            self.stopsign = Int32()

        def detect_stop(self,data):
                frame = self.bridge.imgmsg_to_cv2(data)          # get frame from camera feed data

                        # detection process
                objs = Object_detector.detect(frame)             # detect the object 

                        # plotting
                for obj in objs:
                                # print(obj)
                                label = obj['label']
                                score = obj['score']
                                [(xmin,ymin),(xmax,ymax)] = obj['bbox']
                                color = Object_colors[Object_classes.index(label)]
                                frame = cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), color, 2)
                                frame = cv2.putText(frame, f'{label} ({str(score)})', (xmin,ymin),
                 cv2.FONT_HERSHEY_SIMPLEX , 0.75, color, 1, cv2.LINE_AA)
                                cv2.imshow('stopsign',frame)                    # create window to show objects detected
                           # if a stop sign is detected send out a 1 else send out 0

                                if label == 'stop sign' and  score > 0.1:
                                           self.stopsign.data = 1
                                           self.stopsign.data = 0
def main():
    StopSign_detector = StopSignDetection()
    rate = rospy.Rate(15)
    while not rospy.is_shutdown():

if __name__=='__main__':