Difference between revisions of "2021FallTeam8"

From MAE/ECE 148 - Introduction to Autonomous Vehicles
Jump to navigation Jump to search
 
Line 129: Line 129:




[https://drive.google.com/file/d/1r2b6Swi83I8lkU5pRIl6pWr_IVKMZiAg/view?usp=sharing Final Presentation]
[https://drive.google.com/file/d/1si61Pi-BI0j6OD8YfJAfboRB4ykRHmYe/view?usp=sharing Final Presentation]


==Source Code==
==Source Code==

Latest revision as of 01:23, 11 December 2021

Team Members

  • Colin Riccio - Mechanical Engineering
  • Brian Pack - Mechanical Engineering
  • Carolin Lehmacher - Electrical Engineering

Robot

Robocar - Project

The picture on the right shows our Robocar and part of the wiring for our used project.

Robocar for our Project


Mechanical Design

Camera Mount

The mount system was 3d printed and had 3 parts: a camera backplate, a stand and a lidar mount. The Lidar mount ties into the front standoffs and the stand attaches to the electronics plate.

The camera mount has a pivot joint to allow for repositioning the camera angle. This proved to be initially helpful to set an optimal angle, but we ran into issues where if the mount was bumped it would lead to failures with our DonkeyCar models. It might be a good idea to first have a variable angle mount, find the best setting for the camera, and then create a static mount to use for training.

Camera assembly 8.PNG

Electronic Plate The plate was designed with a full array of mounting holes (with 1cm spacing) to facilitate the attachment of parts anywhere on the plate. It was laser cut from 1/8th inch acrylic.

Assembly 8.PNG

Electrical Design

Components

  • Jetson Nano 2GB
  • Battery
  • USB Camera
  • Servo
  • Xerun 360
  • Anti spark switch
  • 12V to 5V Converter
  • Flipsky mini


Wiring

The following picture shows the wiring of the robocar used for the project.

wiring_8.jpg

EMO Demonstration

EMO demonstration

Autonomous Laps

Warren Tent, 3 laps with DonkeyCar

Circuit Tent, 3 laps with Donkey Car

Warren Tent, 3 Labs with ROS

Final Project

Project Overview

Our goal for the final project was to build an image recognition node onto the ucsd_robocar2 that can detect a speed sign placed on the track and dynamically change the speed of the car.


Electronic Changes

To control the speed of our car, we had to switch out the majority of our electronics and incorporate a VESC motor controller. The VESC can read the sensor in our brushless motor and use that information to set the RPM of the motor, meaning that instead of using PWM to control the motor we can now just send RPM values, directly changing the speed of the car. Because we switched to the VESC, we had to change from the ucsd_robo_car_simple_ros to the ucsd_robocar2 docker package as the ucsd_robo_car_simple_ros system cannot make use of the VESC.


Image Recognition

To recognize different speed signs, we chose to use an Image Classification Neural Network. We decided to use image processing with OpenCV to filter the camera images delivered by the ros camera_node so that only the speed sign is visible in the hope it would make the Classification model stronger. We then used the ros calibration_node to find the best values for our filter, and then collected data for our 3 speed sign classes (~100 images of each sign for training and ~30 for validation) and one null class (~350 training images and ~90 for validation). To actually collect the data, a python script was written to capture an image from the camera, filter that image, and save it in the data folder structure used by the training pipeline we used (Data_Collection).

Image recognition 8.jpg

Example of the webcam image after filtering


After collecting the data, we used a training pipeline built by Team 1 for their final project which created a model built off of transfer learning from ResNet18 (Training_Pipeline).

We created a python script to test the model by taking the webcam image, filtering it, passing that image to the model, and printing out which sign it sees (Model_Live_Tester).

Video of the image recognition


Creating a ROS Node

We then created a new ros speed_reader_node which will subscribe to the camera_node to receive images from the webcam, and will publish a speed value to the lane_guidence_node (Speed_Sign_Node). First we build the node to get a speed value from the user and publish that value, which would then change the speed of the car (Speed_Node). After confirming publishing worked, we added a subscription to the camera_node to get the image and applied OpenCV filters to that image. That filtered image is then passed to the image recognition model which classifies which sign the camera currently sees. The speed associated with that sign is then published to the lane_guidence_node, which in turn changes the speed of the car.

Testing changing the speed of the car with Speed_Node

Obstacles

There were several major roadblocks that we dealt with in our project:

- Changing our electronics took a significant amount of time as we had to solder a bunch of components, remove the old parts, redo wiring and install the new parts

- The ROS2 docker package had several major bugs as it is still in beta

- Lighting conditions in the tents meant it was difficult to use the line following package any time before the sun set

- We were unable to get Pytorch(the package which runs the image classification model) loaded into the Docker container, which meant we were unable to actually get the final speed_reader_node to run

Future Improvements

If given more time to work on the project, we would first want to get Pytorch loaded into the Docker container so that we can use the lane_guidence_node with the speed_reader_node running, recognizing signs and changing the speed. Then, we would like to improve the model by adding more speed signs and collecting more data to do more training. We would also like to experiment with the filter we used to try and make it less noisy.


Presentations

Weekly presentation including project proposal and gantt chart


Final Presentation

Source Code

Modified Lane_Guidence_node:

import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32, Int32, Int32MultiArray
from geometry_msgs.msg import Twist
import time
import os

NODE_NAME = 'lane_guidance_node'
CENTROID_TOPIC_NAME = '/centroid'
ACTUATOR_TOPIC_NAME = '/cmd_vel'
SIGN_TOPIC_NAME = '/speed'

class PathPlanner(Node):
    def __init__(self):
        super().__init__(NODE_NAME)
        self.twist_publisher = self.create_publisher(Twist, ACTUATOR_TOPIC_NAME, 10)
        self.twist_cmd = Twist()
        self.centroid_subscriber = self.create_subscription(Float32, CENTROID_TOPIC_NAME, self.controller, 10)
        self.sign_subscriber = self.create_subscription(Float32, SIGN_TOPIC_NAME, self.sign_check, 10)
        self.sign_subscriber
        self.centroid_subscriber

        # Default actuator values
        self.declare_parameters(
            namespace='',
            parameters=[
                ('steering_sensitivity', 1),
                ('no_error_throttle', 1),
                ('error_throttle', 1),
                ('error_threshold', 1),
                ('zero_throttle',1)
            ])
        self.steering_sensitivity = self.get_parameter('steering_sensitivity').value
        self.no_error_throttle = self.get_parameter('no_error_throttle').value
        self.error_throttle = self.get_parameter('error_throttle').value
        self.error_threshold = self.get_parameter('error_threshold').value
        self.zero_throttle = self.get_parameter('zero_throttle').value
        self.get_logger().info(
            f'\nsteering_sensitivity: {self.steering_sensitivity}'
            f'\nno_error_throttle: {self.no_error_throttle}'
            f'\nerror_throttle: {self.error_throttle}'
            f'\nerror_threshold: {self.error_threshold}'
            f'\nzero_throttle: {self.zero_throttle}'
        )

        # Default speed multiplier
        self.speed_mult = 1.0
    
    # Get speed multipier data from speed topic
    def sign_check(self, data):
        self.speed_mult = data.data
        print('speed set \n')


    def controller(self, data):
        try:
            kp = self.steering_sensitivity
            sm = self.speed_mult
            error_x = data.data
            self.get_logger().info(f"{error_x}")
            if error_x <= self.error_threshold:
                throttle_float = float(self.no_error_throttle)
            else:
                throttle_float = float(self.error_throttle)
            steering_float = float(kp * error_x) #Apply multiplier
            if steering_float < -1.0:
                steering_float = -1.0
            elif steering_float > 1.0:
                steering_float = 1.0
            else:
                pass
            self.twist_cmd.angular.z = steering_float
            self.twist_cmd.linear.x = throttle_float*sm
            self.twist_publisher.publish(self.twist_cmd)

        except KeyboardInterrupt:
            self.twist_cmd.linear.x = self.zero_throttle
            self.twist_publisher.publish(self.twist_cmd)


    # def call_pub(self, twist_msg):
    #     self.twist_publisher.publish(self.twist_cmd)


def main(args=None):
    rclpy.init(args=args)
    path_planner_publisher = PathPlanner()
    try:
        rclpy.spin(path_planner_publisher)
        path_planner_publisher.destroy_node()
        rclpy.shutdown()
    except KeyboardInterrupt:
        path_planner_publisher.get_logger().info(f'Shutting down {NODE_NAME}...')
        path_planner_publisher.twist_cmd.linear.x = path_planner_publisher.zero_throttle
        path_planner_publisher.twist_publisher.publish(path_planner_publisher.twist_cmd)
        time.sleep(1)
        path_planner_publisher.destroy_node()
        rclpy.shutdown()
        path_planner_publisher.get_logger().info(f'{NODE_NAME} shut down successfully.')


if __name__ == '__main__':
    main()

Speed_Reader_node:

import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image
from std_msgs.msg import Float32, Int32, Int32MultiArray
import cv2
from cv_bridge import CvBridge
import numpy as np
import os
import torch
from torchvision import transforms
import time
from PIL import Image as image_pil

NODE_NAME = 'sign_reader_node'
SIGN_TOPIC_NAME = '/speed'

# Topics subcribed/published to in this program
CAMERA_TOPIC_NAME = '/camera/color/image_raw'


class SignReader(Node):
    def __init__(self):
        super().__init__(NODE_NAME)
        self.speed_publisher = self.create_publisher(Float32, SIGN_TOPIC_NAME, 10)
        self.speed_publisher
        self.camera_subscriber = self.create_subscription(Image, CAMERA_TOPIC_NAME, self.read, 10)
        self.camera_subscriber
        self.bridge = CvBridge()

        self.speed_num = Float32()
        self.speed_num.data = 0
        print('speed topic started \n')
        self.frequency = 1
        self.timer_period = 1 / self.frequency
        #self.timer = self.create_timer(self.timer_period, self.read)  # Create the timer

        # self.current_speed=None
        #self.sign_detected = False
        
        #image manipulation values
        
        self.Hue_low = 84
        self.Hue_high = 179
        self.Saturation_low = 54
        self.Saturation_high = 173
        self.Value_low = 34
        self.Value_high = 148
        
        self.gray_lower = 32
        self.inverted_filter = 0

        self.start_height = 200
        self.bottom_height = 450
        self.left_width = 0
        self.right_width = 800
        
        self.model_loc = 'model_1.pb'
        
        self.class_list = ['no_sign', 'sign_1', 'sign_2', 'sign_3']
        self.threshold = 0.99
        self.class_prediction = "no_sign"
        
        #getting the model ready
        self.model = torch.load(self.model_loc)
        self.data_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485,0.456,0.406],[.229,.224,.225])
            ])

    def read(self, data):
        frame = self.bridge.imgmsg_to_cv2(data)

        self.image_width = int(self.right_width - self.left_width)

        img = frame[self.start_height:self.bottom_height, self.left_width:self.right_width]

        # changing color space to HSV
        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

        # setting threshold limits for white color filter
        lower = np.array([self.Hue_low, self.Saturation_low, self.Value_low])
        upper = np.array([self.Hue_high, self.Saturation_high, self.Value_high])
        mask = cv2.inRange(hsv, lower, upper)

        if self.inverted_filter == 1:
            bitwise_mask = cv2.bitwise_and(img, img, mask=cv2.bitwise_not(mask))
        else:
            bitwise_mask = cv2.bitwise_and(img, img, mask=mask)

        # changing to gray color space
        gray = cv2.cvtColor(bitwise_mask, cv2.COLOR_BGR2GRAY)

        # changing to black and white color space
        gray_upper = 255
        (dummy, blackAndWhiteImage) = cv2.threshold(gray, self.gray_lower, gray_upper, cv2.THRESH_BINARY)
        
        
        #running the model on the image
        #converting black and white back to rgb
        rgb = cv2.cvtColor(blackAndWhiteImage, cv2.COLOR_GRAY2RGB)
        #converting image from nparray to regular image
        frame_altered = image_pil.fromarray(rgb)
	    # Performing data transformations to tensor
        temp_tensor = self.data_transform(frame_altered)
	    # altering to fit the input of the prediction pipeline (annoying artifict since it expects a batch of data
        # rather than a single datapoint)
        temp_tensor = temp_tensor.unsqueeze(0)
        # Making the prediction
        test_predicts = self.model(temp_tensor)
        # Finding the index of the highest prediction
        _, pred = torch.max(test_predicts,1)
        
        # if that prediction is above a threshold, then change the current prediction
        if test_predicts[0][int(pred[0])] >= self.threshold:
            self.sign_prediction = self.class_list[int(pred[0])]
            
            if self.sign_prediction != self.class_list[0]:
                print(self.sign_prediction+"detected with "+test_predicts[0][int(pred[0])]+" confidence")
                self.speed_num.data = float(pred[0])/2
                self.speed_publisher.publish(self.speed_num)
                
                #this might break ros, not sure
                time.sleep(2)
        else:
            print("no sign detected")



def main(args=None):
    rclpy.init(args=args)
    sign_reader_publisher = ()
    try:
        rclpy.spin(sign_reader_publisher)
        sign_reader_publisher.destroy_node()
        rclpy.shutdown()
    except KeyboardInterrupt:
        sign_reader_publisher.get_logger().info(f'Shutting down {NODE_NAME}...')

        sign_reader_publisher.destroy_node()
        rclpy.shutdown()
        sign_reader_publisher.get_logger().info(f'{NODE_NAME} shut down successfully.')


if __name__ == '__main__':
    main()

Data_Collection:

import cv2

import numpy as np
from datetime import datetime
import sys



# set image manipulation values based on calibration node
lowH = 84
highH = 179
lowS = 54
highS = 173
lowV = 34
highV = 148

gray_lower = 32

inverted = 0

start_height = 200
bottom_height = 450
left_width = 0
right_width = 800

counter = 0



while(True):
    user_input = input("Press <Enter> key to take a photo. Press <Ctrl> + <c> to exit")

    if user_input == "":
        # Image processing from slider values
        cap = cv2.VideoCapture(0)
        
        ret, frame = cap.read()

        img = frame[start_height:bottom_height, left_width:right_width]
        # changing color space to HSV
        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        lower = np.array([lowH, lowS, lowV])
        higher = np.array([highH, highS, highV])
        mask = cv2.inRange(hsv, lower, higher)

        if inverted == 1:
            bitwise_mask = cv2.bitwise_and(img, img, mask=cv2.bitwise_not(mask))
        else:
            bitwise_mask = cv2.bitwise_and(img, img, mask=mask)

        # changing to gray color space
        gray = cv2.cvtColor(bitwise_mask, cv2.COLOR_BGR2GRAY)

        # changing to black and white color space
        gray_upper = 255
        (dummy, blackAndWhiteImage) = cv2.threshold(gray, gray_lower, gray_upper, cv2.THRESH_BINARY)
                #'~/data/sign_1/train'
                #'~/data/sign_1/val'
                #'~/data/sign_2/train'
                #'~/data/sign_2/val'
                #'~/data/sign_3/train'
                #'~/data/sign_3/val'
        if ret:
            cur_time = datetime.now().strftime("%H%M%S")
            capture = cv2.imwrite(sys.argv[1]+cur_time+".jpg", blackAndWhiteImage)
            counter += 1
            print("Image written to: " + sys.argv[1],capture)
            print("You now have ",counter, " images in "+sys.argv[1])
        else:
            print("an error")



        cv2.waitKey(1)
        cap.release()


cap.release()
cv2.destroyAllWindows()

Model_Live_Tester:

import numpy as np
import cv2
import torch
from torchvision import transforms
import time
from PIL import Image as image_pil

lowH = 84
highH = 179
lowS = 54
highS = 173
lowV = 34
highV = 148

gray_lower = 32

inverted = 0

start_height = 200
bottom_height = 450
left_width = 0
right_width = 800

class_list = ['no_sign', 'sign_1', 'sign_2', 'sign_3']
threshold = 0.70
class_prediction = "None"

def run():

    cap = cv2.VideoCapture(0)
    
    if not cap.isOpened():
        print("Cannot open camera")
        exit()
    
    while True:
        ret, frame = cap.read()
        img = frame[start_height:bottom_height, left_width:right_width]
    
        # changing color space to HSV
        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        lower = np.array([lowH, lowS, lowV])
        higher = np.array([highH, highS, highV])
        mask = cv2.inRange(hsv, lower, higher)
    
        if inverted == 1:
            bitwise_mask = cv2.bitwise_and(img, img, mask=cv2.bitwise_not(mask))
        else:
            bitwise_mask = cv2.bitwise_and(img, img, mask=mask)
    
        # changing to gray color space
        gray = cv2.cvtColor(bitwise_mask, cv2.COLOR_BGR2GRAY)
    
        # changing to black and white color space
        gray_upper = 255
        (dummy, blackAndWhiteImage) = cv2.threshold(gray, gray_lower, gray_upper, cv2.THRESH_BINARY)
        # Display the resulting frame
    
    
        #point to the model location
        model_loc = 'C:/Users/Robert Pack/Downloads/model_1.pb'
        #getting the model ready
        device = torch.device('cpu')
        model = torch.load(model_loc, device)
        data_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485,0.456,0.406],[.229,.224,.225])
            ])
    
        
        rgb = cv2.cvtColor(blackAndWhiteImage, cv2.COLOR_GRAY2RGB)
        
        frame_altered = image_pil.fromarray(rgb)
    	# Performing data transformations to tensor
        temp_tensor = data_transform(frame_altered)
    	# altering to fit the input of the prediction pipeline (annoying artifict since it expects a batch of data
            # rather than a single datapoint)
        temp_tensor = temp_tensor.unsqueeze(0)
            # Making the prediction
        test_predicts = model(temp_tensor)
            # Finding the index of the highest prediction
        _, pred = torch.max(test_predicts,1)
        
        prob = round(float(test_predicts[0][int(pred[0])]),2)
        #print(test_predicts)
        if prob >= threshold:
            class_prediction = class_list[int(pred[0])]
            print(class_prediction+" detected with ",prob," confidence")
        else:
            print("no class above threshold")
                
        cv2.imshow('frame',blackAndWhiteImage)
        
        if cv2.waitKey(1) == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()
    
# When everything done, release the capture
if __name__ == '__main__':
    run()

Training_Pipeline: We got this code from Jacob Glenn Ayers and Team 1

# Import statements
from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from datetime import datetime

# Loading in the datasets
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}
# Change this based on the data being worked on
data_dir = '../test_images'

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

inputs, classes = next(iter(dataloaders['train']))

out = torchvision.utils.make_grid(inputs)

# function to train the model using transfer learning of resnet18
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model


# Performing the Training
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
# This would need to be changed to 5
print("Relevant Classes -\n")
print(class_names)
model_ft.fc = nn.Linear(num_ftrs, len(class_names))

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=10)

# Saving the model
cur_time = datetime.now().strftime("%H%M%S")
torch.save(model_ft,"model_"+cur_time+".pb")

Speed_Node: Node we used to test publishing to the lane_guidence_node to change speed

import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32, Int32, Int32MultiArray
import cv2
from cv_bridge import CvBridge
import time
import os

NODE_NAME = 'speed_node'
SIGN_TOPIC_NAME = '/speed'

class SignReader(Node):
    def __init__(self):
        super().__init__(NODE_NAME)
        self.speed_publisher = self.create_publisher(Float32, SIGN_TOPIC_NAME, 10)
        self.speed_publisher
        self.speed_num = Float32()
        self.speed_num.data = 1.0
        print('speed topic started \n')
        self.frequency = 1
        self.timer_period = 1 / self.frequency
        self.timer = self.create_timer(self.timer_period, self.read)  # Create the timer

        # self.current_speed=None
        #self.sign_detected = False


    def read(self):
        print('trying input \n')
        try:
            num_in = float(input("Set Speed: "))
            if num_in < 0.0:
                num_in = 0.0
            elif num_in > 2.0:
                num_in = 2.0
            else:
                pass
            
            self.speed_num.data = num_in
            self.speed_publisher.publish(self.speed_num)

        except KeyboardInterrupt:
            self.speed_num.data = 1.0
            self.speed_publisher.publish(self.speed_num)




def main(args=None):
    rclpy.init(args=args)
    sign_reader_publisher = SignReader()
    try:
        rclpy.spin(sign_reader_publisher)
        sign_reader_publisher.destroy_node()
        rclpy.shutdown()
    except KeyboardInterrupt:
        sign_reader_publisher.get_logger().info(f'Shutting down {NODE_NAME}...')
        time.sleep(1)
        sign_reader_publisher.destroy_node()
        rclpy.shutdown()
        sign_reader_publisher.get_logger().info(f'{NODE_NAME} shut down successfully.')


if __name__ == '__main__':
    main()