Difference between revisions of "2019FallTeam1"

From MAE/ECE 148 - Introduction to Autonomous Vehicles
Jump to navigation Jump to search
Line 35: Line 35:


== Useful Knowledge ==
== Useful Knowledge ==
===Donkey Parts===
https://www.youtube.com/watch?v=YZ4ESrtfShs
===How Donkey works===
https://www.youtube.com/watch?v=G1JjAw_NdnE


== Results ==
== Results ==

Revision as of 07:56, 11 December 2019

Team Members

  • Harou Xue - Electrical Engineering
  • Yuhan Zhang - Electrical Engineering
  • Cheyenne Herrera - Math/Engineering

Project Objectives

The goal of our project is to create a miniature version of a Tesla. We wanted to increase the safety of the self-driving car by implementing rear-end collision prevention as well as apply the lane change safety. The Donkey RoboCar will stop itself when approaching an object in the front using a TOF sensor mounted to it. Additionally, the car will speed up if a vehicle/object is approaching it from behind. Furthermore, the RoboCar will implement lane change on command.

Mechanical Design

Board.png


Camera Mount.png


Adjustable Camera Holder.png

Electronic Design

Components

  • Jetson Nano with fan and wirless card installed
  • PCA9685 PWM (control servo and ESC)
  • Steering Servo (control steering)
  • Electronic speed controller (ESC) (control throttle)
  • Relay (provide emergency stop)
  • LED (show emergency stop status)
  • power
  • USB camera
  • Arduino (for connecting ToF sensor)
  • Time-of-flight sensor (ToF)
  • Lidar and USB controller

Schematic

Electronic Schematic.png

Software

Useful Knowledge

Donkey Parts

https://www.youtube.com/watch?v=YZ4ESrtfShs

How Donkey works

https://www.youtube.com/watch?v=G1JjAw_NdnE

Results

Challenges

Future Work

References